
Confidential + ProprietaryConfidential + Proprietary

Intelligent Development at Google

By: John Micco

Google Inc. (jmicco@google.com)

Confidential + Proprietary2

Google developer scale

20,000
code reviews per workday

45,000
commits per workday2

1 billion
files1

2 billion
lines of code

800,000
builds per day

150 million
test cases run per day

2+ PB
of build outputs per day

9 million
source files

1 Including release branches
2Automated and Interactive

30,000+
developers

Confidential + Proprietary3

A day in the life of a Google developer

Write a patch against a component

with many dependencies.

Test against the entire Google

codebase. Pass!

Send for review. LGTM!

Confidential + Proprietary

I ❤
Google

1

2

3

Confidential + Proprietary4

Googlers want an amazing dev stack

Confidential + Proprietary

• A comprehensive set of well

integrated tools

• Access to high-quality libraries

• Zero DevOps overhead

Awesome!

Confidential + Proprietary 5

Developer’s Journey

Confidential + Proprietary6

Understanding code

Confidential + Proprietary

Confidential + Proprietary7

Changing code (see Tricorder paper)

Confidential + Proprietary

https://research.google.com/pubs/pub43322.html

Confidential + Proprietary8

Collaborate

Confidential + Proprietary9

“Please fix”

Confidential + Proprietary10

Show me the fix

Confidential + Proprietary11

“Apply Fix”

Confidential + Proprietary12

Fix it for me

Confidential + Proprietary

Confidential + Proprietary13

Code submitted… test continuously

Provide real-time

information to build

monitors

○ Identify failures.

○ Identify culprit

changes.

Develop Safely

○ Sync to last green

changelist.

○ Identify whether

changes break the build

before submitting.

Provide frequent green

builds for cutting releases

○ Show results of all

testing together.

○ Allow release

tooling to choose

a green build.

Confidential + Proprietary14

Code submitted… test continuously

Continuously runs 4.5M tests as

changes are submitted

○ Only “triggers” a test if the

test depends (transitively)

on the change

○ Each test runs in 2

distinct flag combinations

Records the pass / fail result for
each test in a database

○ Each run is uniquely

identified by the test +

flags + change

○ We have 2 years of

results for all tests

See: prior deck about Google CI System, See this paper about piper and CLs

http://www.slideshare.net/JohnMicco1/2016-0425-continuous-integration-at-google-scale?qid=d080ab2b-fc5a-418e-9ab4-41b475412e9b&v=&b=&from_search=1
http://cacm.acm.org/magazines/2016/7/204032-why-google-stores-billions-of-lines-of-code-in-a-single-repository/fulltext

Regression Test Selection (RTS)

Regression Test Selection (RTS)

Regression Test Selection (RTS)

Change Lists

A
ffe

ct
ed

 T
es

t T
ar

ge
t s

et
Cut milestone
at this CL

18

Change Lists

A
ffe

ct
ed

 T
es

t T
ar

ge
t s

et

19

Change Lists

A
ffe

ct
ed

 T
es

t T
ar

ge
t s

et

20

Change Lists

A
ffe

ct
ed

 T
es

t T
ar

ge
t s

et

21

Change Lists

A
ffe

ct
ed

 T
es

t T
ar

ge
t s

et

22

Cuprit Finding - Transition to Fail

A

Time
Targets

Changelists
1 2 3

Passed
Affected, but not run (yet)

Milestone
Non-milestone

4

Failed

Schedule these

Cuprit Finding - Transition to Fail

A

Time
Targets

Changelists
1 2 3

Passed
Affected, but not run (yet)

Milestone
Non-milestone

4

Failed

A: Change 3 broke test A.

Micro-schedulers

● Selectively run any target at any CL
● Fill the gaps in the main scheduler

○ Missed targets
○ Not-yet-run targets

● Research hypotheses can be quickly tested

Other micro-schedulers

● Culprit finder
○ Ranked culprit finder
○ Flakiness culprit finder

● Breakage predictor
○ Hot spots seeker
○ Brain-based predictor
○ Crowd sourcer

● Fix detector
● Auto-rollback

Analysis of Test Results at Google

● Analysis of a large sample of tests (1 month) showed:
○ 84% of transitions from Pass -> Fail are from "flaky" tests
○ Only 1.23% of tests ever found a breakage
○ Frequently changed files more likely to cause a breakage
○ 3 or more developers changing a file is more likely to cause a breakage
○ Changes "closer" in the dependency graph more likely to cause a breakage
○ Certain people / automation more likely to cause breakages (oops!)
○ Certain languages more likely to cause breakages (sorry)

● See accepted Paper (by Atif Memon) at ICSE 2017

See: prior deck about Google CI System, See this paper about piper and CLs

https://research.google.com/pubs/pub45861.html
http://www.slideshare.net/JohnMicco1/2016-0425-continuous-integration-at-google-scale?qid=d080ab2b-fc5a-418e-9ab4-41b475412e9b&v=&b=&from_search=1
http://cacm.acm.org/magazines/2016/7/204032-why-google-stores-billions-of-lines-of-code-in-a-single-repository/fulltext

Confidential + Proprietary

Flaky Tests

● Test Flakiness is a huge problem
● Flakiness is a test that is observed to both Pass and Fail with the same code
● We observe that 84% of transitions from Pass -> Fail are flakes!
● Almost 16% of our 4.5M tests have some level of flakiness
● Flaky failures frequently block and delay releases
● We spend between 2 and 16% of our CI compute resources re-running flaky

tests

https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html

Flakes are Inevitable

● Continual rate of 1.5% of test executions reporting a "flaky" result
● Despite large effort to identify and remove flakiness

○ Targeted "fixits"
○ Continual pressure on flakes

● Observed insertion rate is about the same as fix rate

Conclusion: Testing systems must be able to deal with a certain level of flakiness.
Preferably minimizing the cost to developers

● We re-run test failure transitions (10x) to verify flakiness
○ If we observe a pass the test was flaky
○ Keep a database and web UI for "known" flaky tests

Flaky Test Infrastructure

Confidential + Proprietary

Flaky Test Infrastructure (continued)

● Identifying Flaky tests without re-running them
A. Follow intuition

■ Simple signal of P -> F -> P patterns to indicate flakiness
B. Develop statistical models of features highly correlated with flakes

■ First models show promise - classifying 90% of the flakes correctly
C. Develop statistical models of features highly correlated with real failures

■ Deviations highly likely to be flakes
● Formally model flakes and their behavior

Modeling Test Target Behavior (via Edges)

//top/project/some_service_test P - - F - - - F - - - P -

Negative Edge Positive Edge

- - - F -

Negative Edge

CLs

Edge modeled as StartCL || EndCL || Length || POS/NEG

All Edges Confidently due
to Flakes

Most likely not
including Flakes

Positive 574,282 485,435 (84.5%) 88,847 (15.5%)

Negative 563,993 474,654 (84.2%) 89,339 (15.8%)

Take away message: Small % (1.5-2%) tests flakes (TAP spanner database/total targets in Feb11-Mar11
period); BUT, they lead to majority of edges (edges are better indicators of overall impact of flakes)

Affected

P
F
-

Failed

Passed

Confidential + Proprietary

5 HOUR PERIOD

TEST 1

TEST 2

FLAKES HAVE LARGER NUMBER OF EDGES PER TIME PERIOD.

Confidential + Proprietary

5 HOUR PERIOD

TEST 1

TEST 2

TEST 3

TEST 4

FLAKES ARE UNLIKELY TO SHARE THEIR HISTORIES WITH OTHERS.

Confidential + Proprietary

Modeling Histories of Tests
t1

t2

t3 P - - F - - - F - - - P - - - - F -

t4 F - - - F - - - P - - - - F - - - F

t5

t6

t7

F - - - - - - P - - - - F - - - F

t8 F - - - F - - - P - - - - - - - F

P

P

F - - - F - - - P - - - - F - - - F

P - - F - - - F - - - P - - - - F -

P - - F - - - F - - - P - - - - F -

P - - F - - - F - - - P - - - - F -

“Length of Edge History” vs. Shared Outcomes
“Target History” = Concat All Edges over time period.

Multiple targets share history.

2 targets share
history. Edges in
history = ~20

5000+ targets
share history.
Edges in history
= 2

No sharing
along y-axis

Very little
sharing (2) in
Sharing=2
column

Lots of sharing

“Length of Edge History” vs. Shared Outcomes
“Target History” = Concat All Edges over time period.

Multiple targets share history.

Take away message: Test targets that share history with other targets very unlikely to be flakes.
(“degree of sharing” = signal for flake detection)

All Flakes lie in
“No Sharing” or
“Very little sharing”
area here

Future Directions

Scheduler testing framework - tests for safety and savings against historical record

Q&A
For more information:

● Google Testing Blog on CI system
● Youtube Video of Previous Talk on CI at Google

● Flaky Tests and How We Mitigate Them

● Why Google Stores Billions of Lines of Code in a Single Repo
● GTAC 2016 Flaky Tests Presentation
● (ICSE 2017) "Who Broke the Build? Automatically Identifying Changes That Induce Test Failures In

Continuous Integration at Google Scale" by Celal Ziftci and Jim Reardon
● (ICSE 2017) “Taming Google-Scale Continuous Testing,” by Atif Memon, Zebao Gao, Bao Nguyen,

Sanjeev Dhanda, Eric Nickell, Rob Siemborski and John Micco
● (ICSE 2015) "Tricorder: Building a Program Analysis Ecosystem" by Caitlin Sadowski, Jeffrey van Gogh,

Ciera Jaspan, Emma Söderberg, Collin Winter

http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html
https://www.youtube.com/watch?v=KH2_sB1A6lA&feature=youtube_gdata_player
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://www.youtube.com/watch?v=W71BTkUbdqE
https://www.youtube.com/watch?v=CrzpkF1-VsA
https://research.google.com/pubs/pub45794.html
https://research.google.com/pubs/pub45794.html
https://drive.google.com/open?id=0Bx-FLr0Egz9zYXJfMEZ6NERTbkU
https://research.google.com/pubs/pub43322.html

