Google

Intelligent Development at Google

By: John Micco

Google Inc. (jmicco@google.com)

Confidential + Proprietary

30,000+

developers

45,000

commits per workday?

20,000

code reviews per workday

oogle

1 billion

files?

9 million

source files

2 billion

lines of code

800,000

builds per day

150 million

test cases run per day

2+ PB

of build outputs per day

Confidential + Proprietary

Write a patch against a component
with many dependencies.

Test against the entire Google
codebase. Pass!

Send for review. LGTM!

Google 3 Confidential + Proprietary

A comprehensive set of well

integrated tools Awesome!

Access to high-quality libraries

Zero DevOps overhead

boogle 4 Confidential + Proprietary

file.h #
::util::Status Op;an(StringPiece filename, StringPiece mode, ::File** f,

const file::0ptions& options);

// Open the file named "filename" in the specified "mode" (mode is
// typically an fopen(3) mode; see file/base/open_mode.h for more
// detail). On success, the File is returned; the callers must call
// Close() when the opened file is no longer needed.

//

XRefs History Warnings Docs Project

24692 references to/from Open provided by the Kythe project. See a problem? €
= Definitions (2 occurrences, 1 displayed, 1 not loaded)

323 util::Status Open(StringPiece filename, StringPiece mode,

= Declarations (2 occurrences, 1 displayed, 1 not loaded)

73 ::util::Status Open(StringPiece filename, StringPiece mode, ::File** f,

= Call Hierarchy (517 occurrences, 11956 not loaded)

® 156 TestBody() {... EXPECT OK(file::Open(file name, ...}

Google 6 Confidential + Proprietary

el]

‘clean’ synced @52508564 Q “| Pairjava [
213 ® <p>I1h1s 1mplementatilon returns a string in the torm

* {@code (first, second)}, where {@code first} and {@code second} are the

S e ’ * String representations of the first and second elements of this pair, as
216 * given by {@link String#valueOf(Object)}. Subclasses are free to override
T Recent Directories 317 * this behavior.
|* 212 * @param bogus bla
219 */
build.sh 220 ®@Override public String toString() {
di deps.dot 22 String bla = String.format({"a %d", "abd");
e o [Formatter, InvalidFormatConversion]: Formatter
&9 has invalid conversion 'd’ for type
internal

'java.lang.String'. See http://go/

Absent.java InvalidFermatConversion

Absent_CustomFieldSerial

Abstractlterator.java 278 private static final long serialVersionUID = 747826592375603043L;

Ascii.java P :

BUILD 1

Base.gwt.xml.part

BinaryPredicate.java Related Links =

BlnaryPredic?tes,]aua Pending Changes | Errors

CaseFormat. java

CharMatcher.java s

CharsetCache.java

Charsets.java ~ j/c/gfcommon/base/Pair.java:

Canuerter iava 12. Line 218 Col 13 [DocComments, DocCommentsParams]: The parameter name 'bogus' in the
comment does not match with any of the parameters. See http://go/sap-doccomments-

» Entire Google3 analyzer.

Google 7 Confidential + Proprietary

https://research.google.com/pubs/pub43322.html

Google

Reviewers

ericburnett, huangwei
Bugs 34308361, 147424495

Modify CC JITIEEL SN

OCL 147431296

Submitted 12:39 PM, Feb 17,2017 UTC-8
Workspace

Rapid Candidates R

Files Analysis Progression

TAP Sponge Buganizer

CC alphasource-buildfox-bulk+reviews, buildfox-reviews,

BUILD Added
asci.proto Added
bazel.proto Added
job.proto Added
lease.proto Added
lessor.proto Added
runfox.proto Added
srcfox.proto Added

Data Search Rapid Sig

[©)

* CL 147867437 by ghasemloo C Submitted

Internal BuildFox protos for storage of jobs and leases and the leasing service.

Based on the following doc:
http: o/buildfox-internal-protos

runfox.proto, srcfox.proto, and bazel.proto are initial attempts for minimal functionality
needed and are expected to be updated later.

Score LGTM
Approval

Analysis @) Builder Presubmit Presubmit:CheckTests Submit TapPresubmit
From earlier snapshot(s): DeletedArtifactAnalyzer

@

Expand diffs Run analyses v

“ Changelist ~ Client

Order by: = SmartSort v 1

Comments Inline Modified Delta
ericburnett: 1 Diff Feb 17 69 o
pkm: 1 sethkoehler: 1 Diff Feb 17 9 []
Diff Feb 17 10 []
ericburnett: 3 gh: loo: 2 pkm: 3 sethkoehler: 6 Diff Feb 17 75 [
ich tt: 3 pkm: 3 2l Diff Feb 17 44 []
sethkoehler. 1 Diff Feb 17 65 [
Diff Feb 17 20 ||
Diff Feb 17 19 .
311 mm

8

Confidential + Proprietary

“Please fix”

wlas Pu11=inrntgla;-fnz the Linechart library. --> [42|
ons <style jsuse="//java/com/google/gws/common/linechart/shared style.html#Commons 43
tyle"></style>

- | 51
i TARAlimmant « Pase ClientTure in the mentn. since we Aon '+ wanma Fimire it oo B2

Google 9 Confidential + Proprietary

package com.google.devtools.staticanalysis;

public class Test {

- Lint Missing a Javadoc comment.
Java
1:02 AM, Aug 21

Please fix Not useful

public boolean fool() {
return getString() == "foo".toString();

= ErmorProne String comparison using reference equality instead of value equality

e : S ;
i 'juilg o (see hitp://code . google.com/plerror-pronelwiki/StringEquality)

Please fix

Suggested fix attached: show Mot useful

}

public String getString() {
return new String("foo"):
}
13

Confidential + Proprietary

Googie 10

l/depot/googled/java/com/google/deviools/staticanalysis/Test.java

package com.google.deviools.staticanalysis;

public class Test {
public boolean foo() {
return getString() == "foo".toString();

}

public String getString() {
return new string("foo");
}
}

Kl o

Googie

package com.google.deviools.staticanalysis;
import java.util.Objects;

public class Test {
public boolean foo() {

return Objects.equals(getString(), "foo'.toString());

}

public String getString() {
return new String("foo");
¥
}

11

Confidential + Proprietary

Warnings Project

= % Unused C++ BUILD Dependencies (1 warnings) Apply 1 fix
BUILD:149 * The dependency "//cloud/containers/registry:gcs_provider" appears to be unused

Google 12 Confidential + Proprietary

Code submitted... test continuously

Provide real-time
information to build
monitors

o Identify failures.

o Identify culprit
changes.

Googie

Develop Safely

o Sync to last green
changelist.

o Identify whether
changes break the build
before submitting.

13

Provide frequent green
builds for cutting releases

o Show results of all
testing together.

o Allow release
tooling to choose
a green build.

Confidential + Proprietary

Code submitted... test continuously

Continuously runs 4.5M tests as Records the pass / fail result for
changes are submitted each test in a database

o Each run is uniquely
identified by the test +
flags + change

o We have 2 years of

o Each test runsin 2 results for all tests
distinct flag combinations

o Only “triggers” a test if the
test depends (transitively)
on the change

See: prior deck about Google Cl System, See this paper about piper and CLs

boogle 14 Confidential + Proprietary

http://www.slideshare.net/JohnMicco1/2016-0425-continuous-integration-at-google-scale?qid=d080ab2b-fc5a-418e-9ab4-41b475412e9b&v=&b=&from_search=1
http://cacm.acm.org/magazines/2016/7/204032-why-google-stores-billions-of-lines-of-code-in-a-single-repository/fulltext

Regression Test Selection (RTS)

Regression Test Selection (RTS)

Regression Test Selection (RTS)

Cut milestone
at this CL

—9 9000 0 00— 0 0 0 o
—eo 9o o 0o oo oo o o
oo . oo oo —o
oo . oo oo o—o
oo oo . .
oo oo .
. . .

19s 1001e] 1s8] peoaly

18

Change Lists —————

Google

19s 10b.e] 1s8] pajoayy

19

Change Lists

Google

19s 10b.e] 1s8] pajoayy

20

Change Lists

Google

19s 10b.e] 1s8] pajoayy

21

Change Lists

Google

198 “mm._m.r 1S9 | pPolodly

22

Change Lists

Google

Cuprit Finding - Transition to Fail

Changelists
1 2 3 4
| : : | Time =
Targets | : : '
AP PR
| ; : |
Schedule these
@prassed 0@z o----- Milestone
& Affected, but not run (yet) -t Non-milestone
@ railed

Google

Cuprit Finding - Transition to Fail

Changelists
12 3
Targets | ' '

oo

A: Change 3 broke test A.

& Passed
& Affected, but not run (yet)

@ railed

Google

Time =

Milestone
Non-milestone

Micro-schedulers

e Selectively run any target at any CL
e Fill the gaps in the main scheduler
o Missed targets
o Not-yet-run targets
e Research hypotheses can be quickly tested

Google

Other micro-schedulers
E P Score: Weighted Both Culprit Edges |denfified
e Culprit finder | | | | | | | |

o Ranked culprit finder | | | | | | uﬁ‘
o Flakiness culprit finder . | | | | L/ |

e Breakage predictor ; | | | | /|
o Hot spots seeker

o Brain-based predictor | | | J \ |
o Crowd sourcer | | | | |] \/\

e Fix detector ‘ | | | I

| |
e Auto-rollback | | | | / | I
| | | I — | \:

}%r’ﬁ%ﬁ __r‘—r_‘lt'—v‘v—-—

11:30 12:00 1230 13.00 13:30 14:00 14:30 15:00

Google

Analysis of Test Results at Google

e Analysis of a large sample of tests (1 month) showed: ﬁ .

o 84% of transitions from Pass -> Fail are from "flaky" tests
o Only 1.23% of tests ever found a breakage
o Frequently changed files more likely to cause a breakage
o 3 or more developers changing a file is more likely to cause a breakage
o Changes "closer" in the dependency graph more likely to cause a breakage
o Certain people / automation more likely to cause breakages (oops!)
o Certain languages more likely to cause breakages (sorry)

e See accepted Paper (by Atif Memon) at ICSE 2017

See: prior deck about Google Cl System, See this paper about piper and CLs

Google

https://research.google.com/pubs/pub45861.html
http://www.slideshare.net/JohnMicco1/2016-0425-continuous-integration-at-google-scale?qid=d080ab2b-fc5a-418e-9ab4-41b475412e9b&v=&b=&from_search=1
http://cacm.acm.org/magazines/2016/7/204032-why-google-stores-billions-of-lines-of-code-in-a-single-repository/fulltext

Flaky Tests

Test Flakiness is a huge problem

Flakiness is a test that is observed to both Pass and Fail with the same code
We observe that 84% of transitions from Pass -> Fail are flakes!

Almost 16% of our 4.5M tests have some level of flakiness

Flaky failures frequently block and delay releases

We spend between 2 and 16% of our Cl compute resources re-running flaky

‘tes‘ts Tl s Tl e [e o T el T [s [el \uuuluuuulmuuuuﬂmmmﬂl
GEEEEEEE - -] R e - z
HEHIHHHBBII\‘~\IEIEEHIHHHIHHIHHHE]EHIEHIHIIBBEEIII
LI T 0 I D D 0 - G - - R 00 D0 D0 - O - VR IBEB
EHHHHHEEHHHHHEHHHEHHHIHHEIHEIEEBI-JMMMMHMHMHHHHHHH [F BB
EEBBIBBBEBBBEIEBBBBBEBEIIBBBBBBIL,AHMHMHHEBIE [FIE
EBBIBBBBBBEIBBBEBEBEBIIHHBIEEBIBIE
BBBEEBBBEBBBEBBBEBBBBBBBB
@HHBEHHEUBEHEEHHEEHHHEHH
M- -1 - - -] - - 1E

a0
]
LI
[~[D
[S]D
[<]D
[]
[]
[]
- |
[]
[]
[S]
]
<o
Ry |
D

EEEEEEEE /|- [F|- EEEEEE |
[FE-/-Bb- - 58-E8- FfEaeaEEs |- - EE B
IEHHHHHBHHBBELjumuuuBBBBuHHHHHHBHHBBBBBIBBB B BBB

v -] (- E(- HArE - k4| - [Arard - |6 - [k - Fataratararara - Fararacarara
-] L-1l-] L)L V- |- EA EaEd - -]

EACAEAtAraed - -1 - - - -
-1 [EACARACAEARa - k4 - -
BEEEEEEE L] JEAL- - = -1 =T
HEEEGrE A rEGra A GaraT - EE - EE - E -] /|- A EAHE
Oogle BRI - T L IC - - T I |- JEA A B -]BEBIBEEBEIBB
I J®I - - e - -) el)0 - - - -) - e -] - | - A kA - e - (- (- k- (- - - (- -] - V- = - =) e - - - -0 e

EEBHHBBHH[-EE'
-]

GO~ | < [~ [~] < [EETE] < [~ /o[~ [~ O < /i e]

Confidential + Proprietary

https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html

Flakes are Inevitable

e Continual rate of 1.5% of test executions reporting a "flaky" result

e Despite large effort to identify and remove flakiness
o Targeted "fixits"
o Continual pressure on flakes

e Observed insertion rate is about the same as fix rate

I HLIgBHEFSUBMIIHEB WL TON

UNTIL ALL THE FLAKES PASS

Conclusion: Testing systems must be able to deal with a certain level of flakiness.
Preferably minimizing the cost to developers

Google

Flaky Test Infrastructure

Google

We re-run test failure transitions (10x) to verify flakiness

O

(@)

If we observe a pass the test was flaky
Keep a database and web Ul for "known" flaky tests

flakiness help | file a bug | feedback | 20% projects

Search for a tap project, guitar project, test target or test method...

S oo B

The flakiness data comes from TAP flake detection mechanism. It includes data from tests running on TAF, guitar and tests from build rules annotated with fiaky=1. However, it does not include flaky compilation failures. The information displayed is the test method failure from tests that failed due to
flakiness.

Flaky test executions from TAP project tap Clmmg.m .mn annww
me fix

 Filter: showall hide test tagged as flaky

[source: experimental flakes detector]

avatests/com/gocglclmsung[mp_/tcstbrokcr/scrvcr/bulld.cngucuer La_rgcTcstBrokchmBESystcmTcst (sponge) ran on 2016-10-31. Not a flake? Report it
38 similar flakes from different targets [o)

java.lang.AssertionError: Failed test because ChangelistNotifications is not empty after 30 seconds.
==== TASK ======= payload (ChangelistNotification) ===

changelist: 40000021

test {

p—,. .
rule_kind: “sh_test rule
}
at ozi.iunlt.ﬂauuxt..!uillhaaxt.invn:EBI

(stacktrace truncated,

Flaky Test Infrastructure (continued)

e Identifying Flaky tests without re-running them
A. Follow intuition
m Simple signal of P -> F -> P patterns to indicate flakiness
B. Develop statistical models of features highly correlated with flakes
m First models show promise - classifying 90% of the flakes correctly
C. Develop statistical models of features highly correlated with real failures
m Deviations highly likely to be flakes

e Formally model flakes and their behavior

Google

Confidential + Proprietary

Modeling Test Target Behavior (via Edges)

CLs >
/ltop/project/some_service_test P - | - . - - - . -l - =P -] -] -] - . -
Negative Edge K Positive EdgeK >| Negative Edge >|
P | Passed
Edge modeled as StartCL || EndCL || Length || POS/NEG i Failed
- | Affected

All Edges | Confidently due Most likely not
to Flakes including Flakes

Positive | 574,282 | 485,435 (84.5%) 88,847 (15.5%)

Negative 563,993 | 474,654 (84.2%) 89,339 (15.8%)

Take away message: Small % (1.5-2%) tests flakes (TAP spanner database/total targets in Feb11-Mar11
period); BUT, they lead to majority of edges (edges are better indicators of overall impact of flakes)

FLAKES HAVE LARGER NUMBER OF EDGES PER TIME PERIOD.

U UUUL L resrs

GOOgle Confidential + Proprietary

FLAKES ARE UNLIKELY TO SHARE THEIR HISTORIES WITH OTHERS.

‘ TEST 1

TEST 2

GOOgle Confidential + Proprietary

Modeling Histories of Tests

Google

~—
-

—~
N

~
w

~—
N

~—
(&)

~
[}

~—
\‘

~—
oo

Confidential + Proprietary

“Length of Edge History” vs. Shared Outcomes

Very little
sharing (2) in
Sharing=2
column

No sharing
along y-axis

=]
i
B
S
B
©
L2
=
=
]
=

“Target History” = Concat All Edges over
Multiple targets share history.

time period.

1000

100

\ history = ~20

2 targets share
history. Edges in

5000+ targets
share history.
Edges in history
=2

o

Lots of sharing

5 10 50 100 500
Sharing

1000 5000

“Length of Edge History” vs. Shared Outcomes

“Target History” = Concat All Edges over time period.
Multiple targets share history.

All Flakes lie in
“No Sharing” or
“Very little sharing”
area here

Nuymber of Edges

-
(=]

[L A UL N ALl

5 10 50 100 500 1000 5000
Sharing

Take away message: Test targets that share history with other targets very unlikely to be flakes.
(“degree of sharing” = signal for flake detection)

Future Directions

breakage ratio per skip rate

100

90

80

70

60

54

40

20

13

¢ 005 010 015 02 025 03 D035 04 D45 05 055 06 065 OF O GE 085 09 085 1

m—Cptimized —-—=worit —randoml random = randam3

Scheduler testing framework - tests for safety and savings against historical record

Q&A

For more information:

Google Testing Blog on Cl system
e Youtube Video of Previous Talk on Cl at Google

e Flaky Tests and How We Mitigate Them

Why Google Stores Billions of Lines of Code in a Single Repo
GTAC 2016 Flaky Tests Presentation
(ICSE 2017) "Who Broke the Build? Automatically Identifying Changes That Induce Test Failures In
Continuous Integration at Google Scale" by Celal Ziftci and Jim Reardon

e (ICSE 2017) “Taming Google-Scale Continuous Testing,” by Atif Memon, Zebao Gao, Bao Nguyen,
Sanjeev Dhanda, Eric Nickell, Rob Siemborski and John Micco

e (ICSE 2015) "Tricorder: Building a Program Analysis Ecosystem" by Caitlin Sadowski, Jeffrey van Gogh,
Ciera Jaspan, Emma Sdderberg, Collin Winter

Google

http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html
https://www.youtube.com/watch?v=KH2_sB1A6lA&feature=youtube_gdata_player
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://www.youtube.com/watch?v=W71BTkUbdqE
https://www.youtube.com/watch?v=CrzpkF1-VsA
https://research.google.com/pubs/pub45794.html
https://research.google.com/pubs/pub45794.html
https://drive.google.com/open?id=0Bx-FLr0Egz9zYXJfMEZ6NERTbkU
https://research.google.com/pubs/pub43322.html

