
Clone Detection and
Maintenance with AI Techniques

Na Meng
Virginia Tech

Code Clones

2	

Developers copy and paste code to
improve programming productivity

Clone detections tools are needed to
help bug fixes or refactor code

Existing Clone Detection Tools

3	

Code Clone
Detection

Text-
based

Token-
based

Tree-
based

Graph-
based

Metrics-
based

Problem Statement

•  Each algorithm works better for certain
kinds of clones, but worse for the others
– E.g., token-based, tree-based

•  The algorithms do not prioritize clones
based on their likelihoods of being
refactored

4	

Research Questions

5	

How can we automatically characterize
the similarity between clones?

How can we only report clones that are
likely to be refactored by developers?

CCLEARNER: A DEEP
LEARNING-BASED CLONE
DETECTION APPROACH

[ICSME ’17]: Liuqing Li, He Feng, Wenjie Zhuang, Na Meng,
Barbara Ryder

6	

Methodology

7	

Code Clone Detection Problem

Classification Problem

Approach

8	

Training

Testing

Feature
Extraction

Deep
Learning

Classifier

Source code

Method Extraction

Method Pair Enumerator

Clone Pairs Non-Clone Pairs

Clone Pairs Non-Clone Pairs

Our Hypothesis

•  Code clones are more likely to share
certain kinds of tokens than other
tokens

9	

Tokens likely to be shared
Keywords, method names, …

Tokens less likely to be shared
Variable names, literals, …

Feature Extraction

10	

Category Name Example Category Name Example
 Reserved words <if, 2> Type identifiers <URLConnection, 1>
 Operators <+=, 2> Method identifiers <openConnection, 1>
 Markers <;, 2> Qualified names <arr.length, 1>
 Literals <1.3, 2> Variable identifiers <conn, 2>

methodB methodA

token_freq_listA

[token_freq_catA1, …, token_freq_catA8]

Feature Extraction

11	

methodB

token_freq_listB

[token_freq_catB1, …, token_freq_catB8]

[sim_score1 , . . . , sim_score8]

methodA

token_freq_listA

[token_freq_catA1, …, token_freq_catA8]

Training

12	

•  Input
– Clones

– Non-clones

•  Training Process
– DeepLearning4j*

•  Output
– A well-trained classifier (.mdl)

<[sim_score1 , . . . , sim_score8], 1>

<[sim_score1 , . . . , sim_score8], 0>

* “Deeplearning4j,” http://deeplearning4j.org/, accessed: 2017-09-04

Testing

13	

•  Input
– A codebase

•  Output
– 2 nodes in DNN
– Predict the likelihood of clones and non-

clones
•  Challenges
– Time cost O(n2)

•  Solution
– Two filters

Evaluation

•  Benchmark: BigCloneBench*

–  10 source code folders
– One database of ground truth
– Clone Type: T1, T2, VST3, ST3, MT3 and

WT3/4
•  Data Set Construction
– Training Data (Folder #4)

•  T1, T2, VST3 and ST3 clones
•  Randomly choose a subset of false clone pairs

– Testing data (Other 9 folders)
•  All source files

14	
* Jeffrey Svajlenko, Judith F. Islam, Iman Keivanloo, Chanchal K. Roy and Mohammad Mamun Mia, "Towards a Big Data Curated Benchmark of Inter-
Project Code Clones", In Proceedings of the Early Research Achievements track of the 30th International Conference on Software Maintenance and
Evolution (ICSME 2014), 5 pp., Victoria, Canada, September 2014.

Evaluation

15	

•  Recall

•  Precision

•  F score

RT1−ST 3 =
#	of	retrieved	true	clones	pairs	of	T1-ST3	

#	of	known	true	clones	pairs	of	T1-ST3	

Pestimated =
#	of	retrieved	true	clones	pairs	

385	detected	clone	pair	samples	

FT1−ST 3 =
2	*	Pes?mated	*	RT1-ST3	
Pes?mated	+	RT1-ST3	

Evaluation Results

16	

CCLearner SourcererCC NiCad Deckard
93 98 68 71

CCLearner SourcererCC NiCad Deckard
93 88 76 77

CCLearner SourcererCC NiCad Deckard
T1 100 100 100 96
T2 98 97 85 82

VST3 98 92 98 78
ST3 89 67 77 78

Precision	(%)	

Recall	(%)	

F	(%)	

Things We Learnt

•  CCLearner achieves a better trade-off
between precision and recall
– Perhaps deep learning or our unique feature

sets play the role
•  CCLearner’s recall goes down as more

variation exists between clone peers
– We may need more features to represent

the semantic equivalence between clones
instead of purely the syntactic similarity

17	

CLONERECOMMENDER:
MACHINE LEARNING-BASED
CLONE RECOMMENDATION FOR
REFACTORING

[Under submission] Ruru Yue, Zhe Gao, Na Meng, Yingfei Xiong,
Xiaoyin Wang

18	

Motivation

•  With clone detection, developers apply clone
removal refactorings
–  e.g., Extract Method and Form Template Method

•  Each clone detection tool reports too many
clones

•  Some clones are more likely to be refactored
than others
– E.g., repetitively updated code clones vs. inactive

code clones

19	

Our Hypotheses

•  The clones refactored by developers
and those not refactored should
manifest certain differences
– Content, context, and evolution of each

clone
– The textual similarity/difference and co-

change relationships between clone peers
•  Different developers make refactoring

decisions in similar or predictable ways
20	

Approach

21	

Refactored	
Clones	

Non-Refactored	
Clones	

Training	

Tes3ng	

Feature	Extrac+on	
Machine	
Learning	

Classifier	

A	Project	
Repository	

Clone	
Detec+on	

Clones	to	
Refactor	

Clones	not	
to	Refactor	

LocaBon/Context	Features	(4)	
SyntacBc	Difference	
Features	(6)	

Code	Feature	(9)	
History	Features	(6)	

Co-Change	Features	(5)	

Clone	
Group	
Features	
(16)	

Per-Clone	
Features	(15)	

Group	Size	(1)	

Detected	
Clones	

Things We Learnt

•  The refactoring decisions seem to be
predictable in most cases

•  Some refactorings seem to be
unpredictable
– We can only predict refactorings based on

code history and its current version
– Some developers make different

refactoring decisions

22	

Conclusion

•  Our investigation on CCLearner and
CloneRecommender demonstrates that
AI can improve the efficiency of
software development and reduce
maintenance cost

•  AI techniques cannot fully overtake
coding tasks due to (1) the difficulty of
reasoning semantics, and (2) lack of the
domain knowledge to evolve software

23	

