Clone Detection and Maintenance with AI Techniques

Na Meng Virginia Tech

Code Clones

Developers copy and paste code to improve programming productivity

Clone detections tools are needed to help bug fixes or refactor code

Existing Clone Detection Tools

Problem Statement

- Each algorithm works better for certain kinds of clones, but worse for the others – E.g., token-based, tree-based
- The algorithms do not prioritize clones based on their likelihoods of being refactored

Research Questions

How can we automatically characterize the similarity between clones?

How can we only report clones that are likely to be refactored by developers? [ICSME '17]: Liuqing Li, He Feng, Wenjie Zhuang, Na Meng, Barbara Ryder

CCLEARNER: A DEEP LEARNING-BASED CLONE DETECTION APPROACH

Methodology

Code Clone Detection Problem

Classification Problem

Our Hypothesis

 Code clones are more likely to share certain kinds of tokens than other tokens

Tokens likely to be shared

Keywords, method names, ...

Tokens less likely to be shared

Variable names, literals, ...

[token_freq_cat_ A_1 , ..., token_freq_cat_ A_8]

Category Name	Example	Category Name	Example
Reserved words	<if, 2=""></if,>	Type identifiers	<urlconnection, 1=""></urlconnection,>
Operators	<+=, 2>	Method identifiers	<pre><openconnection, 1=""></openconnection,></pre>
Markers	<;, 2>	Qualified names	<arr.length, 1=""></arr.length,>
Literals	<1.3, 2>	Variable identifiers	<conn, 2=""></conn,>

Training

- Input
 - Clones
 - <[*sim_score*₁,..., *sim_score*₈], 1>
 - Non-clones
 <[sim_score1, ..., sim_score8], 0>

Output

A well-trained classifier (.mdl)

Testing

- Input
 A codebase
- Output
 - 2 nodes in DNN

- Predict the likelihood of clones and nonclones
- Challenges
 - Time cost $O(n^2)$
- Solution
 - Two filters

Evaluation

- Benchmark: BigCloneBench*
 - 10 source code folders
 - One database of ground truth
 - Clone Type: T1, T2, VST3, ST3, MT3 and WT3/4
- Data Set Construction
 - Training Data (Folder #4)
 - T1, T2, VST3 and ST3 clones
 - Randomly choose a subset of false clone pairs
 - Testing data (Other 9 folders)
 - All source files

^{*} Jeffrey Svajlenko, Judith F. Islam, Iman Keivanloo, Chanchal K. Roy and Mohammad Mamun Mia, "Towards a Big Data Curated Benchmark of Inter-Project Code Clones", In Proceedings of the Early Research Achievements track of the 30th International Conference on Software Maintenance and 14 Evolution (ICSME 2014), 5 pp., Victoria, Canada, September 2014.

Evaluation

Recall

 $R_{T1-ST3} = \frac{\# of retrieved true clones pairs of T1-ST3}{\# of known true clones pairs of T1-ST3}$

Precision

of retrieved true clones pairs

385 detected clone pair samples

• F score

P_{estimated}

$$F_{T1-ST3} = \frac{2 * P_{estimated} * R_{T1-ST3}}{P_{estimated} + R_{T1-ST3}}$$

Evaluation Results

		CCLearner	SourcererCC	NiCad	Deckard
Recall (%)	T1	100	100	100	96
	T2	98	97	85	82
	VST3	98	92	98	78
	ST3	89	67	77	78
Precision (%)		CCLearner	SourcererCC	NiCad	Deckard
		93	98	68	71
F (%)					
			SourcererCC		Deckard
		93	88	76	77

Things We Learnt

- CCLearner achieves a better trade-off between precision and recall
 - Perhaps deep learning or our unique feature sets play the role
- CCLearner's recall goes down as more variation exists between clone peers
 - We may need more features to represent the semantic equivalence between clones instead of purely the syntactic similarity

[Under submission] Ruru Yue, Zhe Gao, Na Meng, Yingfei Xiong, Xiaoyin Wang

CLONERECOMMENDER: MACHINE LEARNING-BASED CLONE RECOMMENDATION FOR REFACTORING

Motivation

• With clone detection, developers apply clone removal refactorings

– e.g., Extract Method and Form Template Method

- Each clone detection tool reports too many clones
- Some clones are more likely to be refactored than others
 - E.g., repetitively updated code clones vs. inactive code clones

Our Hypotheses

- The clones refactored by developers and those not refactored should manifest certain differences
 - Content, context, and evolution of each clone
 - The textual similarity/difference and cochange relationships between clone peers
- Different developers make refactoring decisions in similar or predictable ways

Approach

Things We Learnt

- The refactoring decisions seem to be predictable in most cases
- Some refactorings seem to be unpredictable
 - We can only predict refactorings based on code history and its current version
 - Some developers make different refactoring decisions

Conclusion

- Our investigation on CCLearner and CloneRecommender demonstrates that AI can improve the efficiency of software development and reduce maintenance cost
- AI techniques cannot fully overtake coding tasks due to (1) the difficulty of reasoning semantics, and (2) lack of the domain knowledge to evolve software